Spatiotemporal variations in extreme precipitation in the contiguous USA and the Madden-Julian Oscillation (MJO)

Charles Jones¹, Leila Carvalho¹, Jon Gottschalk² ¹University of California, Santa Barbara ²Climate Prediction Center (CPC/NCEP)

CTB Project: Probabilistic forecasts of extreme events and weather hazards over the United States (Jul 08-Dec 11)

- 15 initial conditions per month
- Forecasts out to 270 days; we analyzed forecasts out to 4 weeks
- Analyzed deterministic and probabilistic forecast skill of extreme P
 P > 75th percentile
 P > 90th percentile
- However, CFSR.v1 difficult to investigate importance of MJO on probabilistic forecasts of extreme P
- CFSR.v2 offers much higher number of ensemble members

Jones, C., J. Gottschalck, L. M. V. Carvalho, and W. Higgins, 2011: Influence of the Madden-Julian Oscillation on forecasts of extreme precipitation in the contiguous United States. *Monthly Weather Review*, 139, 332-350.

Heidke Skill
Score (HSS)
90th percentile
extreme
Precipitation
over the western
CONUS

When the MJO is active

1.0

HSS is higher and extends to longer leads (Week-2)

1.0

The HSS of extreme precipitation (90th percentile) forecasts during each MJO phase. Solid lines represent the average over grid points that are significant at 5% level. Upper (lower) dashed lines indicate the max (min) HSS values.

Phase 3

Jones, C., L. M. V. Carvalho, J. Gottschalck and W. Higgins, 2011: The Madden-Julian Oscillation and the relative value of deterministic forecasts of extreme precipitation in the contiguous United States. *Journal of Climate*, **24**, 2421-2428.

Application of a simple economic value model to CFSR.v1 forecasts of 90th extreme precipitation

Cost/loss ratio decision model
$$V = \frac{\min(\alpha, s) - F(1-s)\alpha + Hs(1-\alpha) - s}{\min(\alpha, s) - s\alpha}$$

Where V is value, α = user's cost/loss ratio (C/L), \mathbf{s} = climatological base rate of the event (90th extreme), \mathbf{H} = hit rate, \mathbf{F} = false alarm rate When α = \mathbf{s} potential (or maximum) forecast value

And the challenge is

Work in progress

- Investigating how the MJO modulates the spatiotemporal variability of precipitation
- Developing metrics of probabilistic forecasts of precipitation in Weeks 3-4

Observations

Only gridpoints with P > 90th percentile

CREP: P in gridpoint > 90th percentile, area of connected gridpoints > 90th percentile of areas of extreme P

For each CREP:

- Day of occurrence
- If MJO was active, in what phase, amplitude
- Mean precipitation, area, center
- Probabilities of CREP with different intensities and areas conditioned on MJO

Counts assigned to center of each CREP (1 November-31 March, 1979-2010). Total: **5600**.

$P(C_{PX} \cap MJO_{day})$: joint probability of C_{PX} and MJO being active

Where:

C_{PX}: one or more CREPs anywhere in the CONUS with mean precipitation exceeding P_x mm day⁻¹;

MJO_{day}: an active MJO day (in any phase);

Similarly for: $P(C_{PX} \cap INA_{day})$: joint probability of C_{PX} and MJO being inactive

Joint probabilities of CREPs during active and inactive MJO days

Joint probabilities of CREPs during active and inactive MJO days

 $P(C_{AX} \cap MJO_{day})$: joint probability of C_{AX} and MJO being active,

Where:

C_{AX}: one or more CREPs anywhere in the CONUS with area exceeding A_X km²

MJO_{day}: an active MJO day (in any phase)

Probabilities of CREPs conditioned on MJO phase

P(C_{PX} / MJO_{Φ}): conditional probability of C_{PX} given that MJO is active and in phase Φ (1-8)

Where:

C_{PX}: one or more CREPs anywhere in the CONUS with mean precipitation exceeding P_x mm day⁻¹

MJO and extreme precipitation

- Forecast skill of extreme precipitation is usually higher when the MJO is active and has enhanced convection occurring over the western hemisphere, Africa, and/or the western Indian Ocean than in quiescent periods.
- ➤ HSS greater than 0.1 extends to lead times of up to two weeks in these situations.
- ➤ Occurrences of CREPS over the CONUS are significantly higher when the MJO is active (69.1%) than during inactive days (30.9%).
- ➤ The probability of occurring one or more CREPs over the CONUS is nearly twice as large when the MJO is active than in quiescent days.

Work in progress

Predictand:
S_J is percentage of
CONUS sector with
average precipitation
in Week-K >
Threshold (50th, 75th,
90th percentiles)

■ Evaluating skill of probabilistic forecasts of precipitation in Weeks 3-4

Identification of MJO

- NCEP/NCAR reanalysis: U200, U850 intraseasonal anomalies
- combined EOF
- Phase diagram from PC1/PC2
- MJO event has amplitude > 0.9
- Phase rotates anti-clockwise
- 81 MJO events during 1 Nov-31 Mar, 1979-2010

(phases ~Wheeler and Hendon 2004)

Enhanced convection

